RADIATIVE — CONDUCTIVE HEAT TRANSMISSION IN
THE REGULAR MODE OF THE SECOND KIND

E. N. Bezrukova and A, A. Men' UDC 536.33:536.241

Radiative —conductive heat transmission has been studied theoretically in a plane layer
with a linearly varying boundary temperature. It is shown when the regular mode of the
second kind prevails. An exact solution is obtained to the quasisteady-state equation for
this stage, The error in the approximate description of the temperature is evaluated,

As is well known, in a medium with a linearly varying boundary temperature there is eventually
established a regular mode of the second kind, characterized by a constant rate of temperature change at
all points in the medium {1]. The theory of this mode is based on the solution of the Fourier equation and,
therefore, its applicability is limited to substances in which energy is transmitted by conduction only. The
application of this theory to semitranslucent materials in which the radiative mechanism of heat trans-
mission operates along the conductive mechanism is not justified, since here the temperature field is de-
scribed by a more general equation of radiative —conductive heat transmission [2]. At the same time,
methods of analyzing regular modes in thermophysics have been sufficiently well developed, they offer
certain unquestionable advantages and their application to semitranslucent materials is dictated by practi-
cal considerations. In this article we will analyze theoretically the regularization of the transient radia-
tive —conductive heat transmission in a plane layer the temperature of whose boundary surfaces is a linear

function of time, As far as we know, this problem has not been dealt with before.

We consider a plate of semitranslucent material and thickness 2/ (Fig. 1). In direct thermal contact
with its surfaces are opague but otherwise identical bodies (heaters) which ensure a temperature variation
of the Tg = T; + b7 kind at the boundaries. The initial temperature distribution in the layer is a given sym-
metrical functlon fx). The reflection coefficient at the boundaries Ry, is defined by the Fresnel formulas.
The thermophysical properties of the material A and cy as well as its spectral optical characteristics
n, and k;, are assumed known. It has been established earlier that the temperature field is insensitive to
temperature variations of n,, and, therefore, the relation n,(T) will be ignored. The relations A(T), ¢(T),
and k,, (T) will be accounted for as follows. Since the temperature difference across the layer is much
smaller than the absolute temperature, hence one may consider that dA/dx =de/dx =dk,/dx =0 and }, c,
k, vary with the boundary temperature: A = A(Tg), ¢ = ¢(Tg), and k;, = k,(Tg).

The temperature field in a plane layer is described by the equation of radiative — conductive heat
transmission:
- = aT :
(T o7

div(g 4- E) = —cy g (1)
where, in addition to the thermal flux vector ¢, we introduce the radiation vector E, the latter being a non-
linear functional of the temperature distribution T (x). The explicit expression for E depends on the nature
of the reflection at the boundaries [2]. Without loss in generality, it may be assumed that the reflections
are predominantly of the mirror kind. Other possible kinds of reflections are analyzed analogously (see
{2]). With a change of variables to 4(x) = Tg — T (x) we obtain
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Integrating from 0 to x, by virtue of symmetry in the temperature field, we find
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Fig. 1
Fig. 1. Schematic diagram of the problem.

Fig. 2. Temperature distribution during the regular stage (H
=2 c¢m, b =800 deg/h, T =1100°K): 1) exact solution to Eq. (L0);
2) parabola AT (1 — x*/1%).
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A subsequent integration from -/ to x and the boundary condition #(-1) = 0 yield

X
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where function K;{x, £) is defined by the equalities
J~—l —& —ILE<0,
- g’ < E, < X,
0, r<E<I (4)

Kl ()l.’, E,) =

We will use the expression derived in [3] for the radiation vector. Tra.nsformatxons analogous to those in
[4] and the symmetry of the boundary conditions lead to the relation
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k, =k, (Tg) and Ey(z) is a third-order integroexponential function. Inserting (5) into (3), we obtain a non-
linear integrodifferential equation describing the temperature distribution in the layer in the general for-
mulation of the problem. As has beeh mentioned earlier, the stipulation that 3(¢) «< Tg holds at every
point in the plate, so that a linearization of expression (5) cannof significantly influence the calculation
of the temperature field. In this case we arrive at the following linear integrodifferential equation:
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The solution to this equation will be sought in the form ¢(x, 7) = ¢ ()4 (x). Inasmuch as 4(x, T) is a sym-
metrical function for every 7, we will approximate &, (x) by a parabola 1 —x*/12, Inserting ¢ (1) (1 — x2/1%)
into Eq. (6), we see that this equation is automatically satisfied for x = £I. We require now that the chosen
function satisfy this equation also at x = 0 (the collocation method). It will be shown subsequently that the
error of the thus approximated solution is insignificant. We have '
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and, after a few transformations, the following differential equation for determining the function & (r):
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while ¢, A, k,,, and 8lp/ 9T depends on the time implicitly through Tg. Solving (7), we find

ﬁl(r):f«))exp(f@(y)dy)Jr—-b Sexp(f@(&)d& )dy. | o)
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It is interesting to note that, when k,, - =, K(x, £, v) — 0 for every x. Then (9) yields a usual expression
for an opaque medium (discounting the relations A(Tg) and c(Tg)):
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which, as 7 increases, becomes the well-known temperature distribution in the regular mode of the second

kind: .
b1z x?
() =—— [ 1 — 1.
@ 2a ( e )

In order to explain the dynamics of the temperature field when both heat-transmission components
are effective, formulas (8) and (9) were calculated on a computer with various values for the system param-
eters. These calculations have shown that 4, () does not, generally, tend towards a constant value, but the
derivative 8% (r)/9r becomes much smaller than b and remains so for a long time period during which the
specimen is heated by 500-700°C, Unlike in opaque bodies, where the irregular mode is exponential in
.character, in semitranslucent media the function ¢ (r) is of the extremal kind: the first stage of the process
comes to an end after the maximum value has been reached. The heating of the layer from various initial
temperature distributions does not exceed 100°C during this stage. The subsequent departure of 8%;/67
from b does not exceed 2%. For this reason, one may assert within this accuracy that a regular mode pre-
vails in the layer. The values of ¢;(7) at various instants of time 7 are given in Table 1 for a plate of grade
KV quartz glass 2 cm thick (Tj = 500°K, b =800 deg/h).

Having established that the mode is regular, one can significantly simplify the mathematical descrip—
tion of the heat transmission in this stage. Assuming 8¢/87 = 0 in Egs. (3) and (6), one can replace the
integrodifferential equations by integral equations.
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TABLE 1. Maximum Temperature Difference as a Function of
Time (b =800 deg/h, H =1 cm)

sec 0 60 120 180 240 300 230 420 480 540
°’c - 0 13,1 | 17,65 { 18,83 | 19,66 | 19,81 | 19,85 | 19,83 | 19,80 | 19,78
sec 600 ' 860 720 1620 | 1680 | I7s0 | 2160 | 2020 | 2280

°C 18,74 | 19,69 | 19,64 | 18,65 | 18,59 | 18.52 | 18,07 | 18,00 17,93

Let us further analyze the linearized equation of radiative —conductive heat transmission in the regu-
lar mode, With the aid of (6) we find
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In our case Tg(7) is a parameter of the equation which determines the values of 8Ig/0T, A, ¢, and k. In
other words, the temperature distribution in the layer based on (10) refers to a definite instant of time and,
consequently, to a specific value of Tg(r) which affects 4(x) implicitly through A, ¢, k,, and 8Ig/8T. For
this reason, Eq. (10) may be considered a quasisteady-state equation. It has been solved on a computer by
the method of quadratures. An application of the Simpson and of the Markov rule has shown the latter to be
preferable, As the number of nodes N was increased, the resultant temperature distribution stabilized

so that, after N = 16, a further increase of N had almost no effect on ¥ (x).

Curve 1 in Fig. 2 represents the exact solution to Eq. (16). In order to simplify the calculation, we
used the "gray" approximation with function k replaced by the mean spectral value k. Such a substitution
wag inconsequential here, since the properties of the equation and the method of solution were of chief
interest. In order to obtain specific results for various semitranslucent materials, however, it would be
necessary to consider the selectivity of optical characteristics — as has been shown earlier [3].

Curve 2 in Fig. 2 is the approximating parabola AT (1 — x2/1%) where AT = Tg —~T(0). As can he seen,
the departures of #(x) from the parabola are insignificant, The same result was obtained in an analysis of
4(x) at various instants of time, Thus, it has been established that the solution of the transient equation (6)
by the collocation method, as shown here, contains a small error.

If this approximation is used in Eq. (10) and, besides, x = 0 is assumed, then one arrives at the fol-
lowing relation:

[e:] Z -
biz 2n 0lg ) g2 )
AT = —— — AT 2 25 1— 2| [K(x, &, v)—K(—1, & v)| dE}dv, 11
2a acy X”V(aT)T{S( ? (K & ) ’ ()
V=0 s
from which follows the equality
b2
_ B TR oT R
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where function IR, T, k,) denotes the integral factor in (11). Relation (12) can be used for determining
the thermal diffusivity of semitranslucent materials on the basis of the regular mode of the second kind,

NOTATION

is the thermal conductivity;

is the thermal diffusivity;

is the specific heat;

is the density of the material;

is the refractive index;

is the absorption coefficient;

is the reflection coefficient at the boundary;
is the thermal flux vector;

is the radiation flux vector;
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is the Planck function;

is the rate of temperature change at the surface;
is the layer thickness; :
is the third-order integroexponential function;

is the number of nodes in the quadrature formula;
are the space coordinates;

is the time coordinate,

Subscripts

p
i
v

refers to the surface temperature;
refers to the initial temperature;
refers to spectral quantities,

Superscript

*

I
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PP ps

refers to an opague medium,
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